Autor: |
Paoletti, L C, Kasper, D L, Michon, F, DiFabio, J, Holme, K, Jennings, H J, Wessels, M R |
Zdroj: |
Journal of Biological Chemistry; October 1990, Vol. 265 Issue: 30 p18278-18283, 6p |
Abstrakt: |
We have developed an oligosaccharide-tetanus toxoid conjugate vaccine against type III group B Streptococcus. Purified group B streptococcal type III capsular polysaccharide was depolymerized by enzymatic digestion using endo-beta-galactosidase produced by Citrobacter freundii. Following enzymatic digestion, oligosaccharides were fractionated by gel filtration chromatography on Sephadex G-75. An oligosaccharide pool of average Mr = 14,500 (corresponding to 13.6 repeating units of the type III polysaccharide) was used for conjugation to tetanus toxoid. Tetanus toxoid was covalently coupled via a synthetic spacer molecule to the reducing end of the oligosaccharide by reductive amination. The oligosaccharide-tetanus toxoid conjugate elicited type III-specific anticapsular antibodies (measured in enzyme-linked immunosorbent assay) in three out of three rabbits whereas the unconjugated native type III polysaccharide was nonimmunogenic. Antiserum from rabbits vaccinated with the oligosaccharide-protein conjugate protected mice against lethal challenge with live group B streptococci (16 out of 16 mice survived) and opsonized group B streptococci for phagocytosis in vitro. No protection was conferred by preimmune serum nor by serum from rabbits vaccinated with unconjugated native type III polysaccharide. An oligosaccharide-protein conjugate vaccine of this design may prove to be an effective immunogen for protection against group B streptococcal infection in humans. In addition, the approach to vaccine design utilized in these studies will facilitate further definition of the structural parameters that determine immune response to glycoconjugate vaccines. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|