Abstrakt: |
Liquid, supplied through a stationary tube to the inner part of a rotating cup widening toward a brim, flows viscously in a thin layer toward this brim and is then flung off, all by centrifugal action. The flow within this layer and the disintegration phenomena occurring beyond the brim have been studied, experimentally as well as theoretically. A formula has been derived for the thickness and for the radial velocity of the liquid layer within the cup, which proved to agree reasonably well with experimental results. Three essentially different types of disintegration may take place around and beyond the edge of the cup designated, respectively, by: (a) the state of direct drop formation; (b) the state of ligament formation; and (c) the state of film formation. Which one of these is realized depends upon working conditions. Transition from state (a) into (b), or of state (b) into state (c) is promoted by an increased quantity of supply, an increased angular speed, a decreased diameter of the cup, an increased density, an increased viscosity, and a decreased surface tension of the liquid. The experimental results have been expressed in relationships between relevant dimensionless groups. For the state of ligament formation a semiempirical relationship has been derived between the number of ligaments and dimensionless groups determining the working conditions of the cup. Results of drop-size measurements made for the state of ligament formation as well as for the state of film formation show that atomization by mere rotation of the cup is much more uniform than commonly achieved with pressure atomizers. |