Autor: |
O’Leary, Meghan K., Chen, Sabrina S., Westblade, Lars F., Alabi, Christopher A. |
Zdroj: |
Biomacromolecules; February 2021, Vol. 22 Issue: 2 p984-992, 9p |
Abstrakt: |
The rise of multidrug-resistant (MDR) “superbugs” has created an urgent need to develop new classes of antimicrobial agents to target these organisms. Oligothioetheramides (oligoTEAs) are a unique class of antimicrobial peptide (AMP) mimetics with one promising compound, BDT-4G, displaying potent activity against MDR Pseudomonas aeruginosaclinical isolates. Despite widely demonstrated potency, BDT-4G and other AMP mimetics have yet to enjoy broad preclinical success against systemic infections, primarily due to their cytotoxicity. In this work, we explore a prodrug strategy to render BDT-4G inactive until it is exposed to an enzyme secreted by the targeted bacteria. The prodrug consists of polyethylene glycol (PEG) conjugated to BDT-4G by a peptide substrate. PEG serves to inactivate and reduce the toxicity of BDT-4G by masking its cationic charge and antimicrobial activity is recovered following site-specific cleavage of the short peptide linker by LasA, a virulence factor secreted by P. aeruginosa. This approach concurrently reduces cytotoxicity by greater than 1 order of magnitude in vitroand provides species specificity through the identity of the cleavable linker. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|