Autor: |
N, Li D, P, Pritchard M, P, Hanlon S, B, Burchell, R, Wolf C, T, Friedberg |
Zdroj: |
The Journal of Pharmacology and Experimental Therapeutics; May 1999, Vol. 289 Issue: 2 p661-7, 7p |
Abstrakt: |
NADPH-cytochrome P-450 oxidoreductase (CPR) is essential for the catalytic activity of cytochrome P-450 (P-450). On a molar basis, the amount of P-450 exceeds that of CPR in human liver. In this study, we investigated whether drug-drug interactions can occur as a result of competition between P-450 isozymes for this ancillary protein. For this purpose, combinations of P-450 isozymes were coexpressed together with P-450 reductase in Escherichia coli. We show that testosterone inhibited the CYP2D6-mediated bufuralol 1'-hydroxylase activity in bacterial membranes containing both CYP2D6 and CYP3A4 but not in membranes containing CYP2D6 alone. Conversely, bufuralol inhibited the CYP3A4-mediated testosterone 6beta-hydroxylase activity in bacterial membranes containing both CYP3A4 and CYP2D6 but not in membranes containing only CYP3A4. In each case, inhibition was seen even at a P-450 to P-450 reductase ratio of 1.9:1, which is more favorable than the ratio of 4 reported for human liver. The physiological significance of this mechanism was demonstrated by the observation that testosterone inhibited several prototypical P-450 enzyme activities, such as bufuralol 1'-hydroxylase, coumarin 7-hydroxylase, and 7-ethoxyresorufin O-dealkylase, in human liver microsomes, but not if tested against a panel of bacterial membranes containing the human P-450 isozymes that mainly catalyze these reactions. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|