Differential induction of rat hepatic cytochromes P450 3A1, 3A2, 2B1, 2B2, and 2E1 in response to pyridine treatment.

Autor: H, Kim, A, Putt D, C, Zangar R, R, Wolf C, P, Guengerich F, J, Edwards R, F, Hollenberg P, F, Novak R
Zdroj: Drug Metabolism and Disposition; March 2001, Vol. 29 Issue: 3 p353-60, 8p
Abstrakt: Pyridine (PY) effects on rat hepatic cytochromes P450 (CYP) 3A1 and 3A2 expression were examined at the levels of metabolic activity, protein, and mRNA and were compared with those of CYP2B1/2 and CYP2E1. CYP3A metabolic activity as well as CYP3A protein and mRNA levels increased following treatment of rats with PY. CYP3A1 and CYP3A2 were differentially affected by PY treatment in terms of induction levels, dose dependence, and stability of mRNA. CYP3A1 mRNA levels maximally increased ~42-fold after PY treatment, whereas CYP3A2 mRNA level increased ~4-fold. Moreover, CYP3A1 mRNA levels decreased more rapidly than those of CYP3A2 as determined following inhibition of transcription with actinomycin D or cordycepin. Treatment of rats with PY resulted in a dose-dependent increase in CYP3A1, CYP3A2, and CYP2B1/2B2 protein levels. In contrast to the effects of PY treatment on CYP3A1 and 2B, CYP2E1 protein levels increased in the absence of a concomitant increase in CYP2E1 mRNA levels. Treatment of rats with PY at 200 mg/kg/day for 3 days increased both protein and mRNA levels of CYP3A2, whereas treatment with higher than 200 mg/kg/day for 3 days increased CYP3A2 protein levels without an increase in CYP3A2 mRNA levels. These data demonstrated that PY regulates the various CYPs examined in this study at different levels of expression and that PY regulates CYP3A1 expression through transcriptional activation and CYP3A2 expression through transcriptional and post-transcriptional activation at a low- and high-dose PY treatment, respectively.
Databáze: Supplemental Index