Abstrakt: |
Saquinavir is a HIV protease inhibitor used in the treatment of patients with acquired immunodeficiency syndrome, but its use is limited by low oral bioavailability. The potential of human intestinal tissue to metabolize saquinavir was assessed in 17 different human small-intestinal microsomal preparations. Saquinavir was metabolized by human small-intestinal microsomes to numerous mono- and dihydroxylated species with K(M) values of 0.3-0.5 microM. The major metabolites M-2 and M-7 were single hydroxylations on the octahydro-2-(1H)-isoquinolinyl and (1,1-dimethylethyl)amino groups, respectively. Ketoconazole and troleandomycin, selective inhibitors of cytochrome P4503A4 (CYP3A4), were potent inhibitors for all oxidative metabolites of saquinavir. The cytochrome P450-selective inhibitors furafylline, fluvoxamine, sulfaphenazole, mephenytoin, quinidine, and chlorzoxazone had little inhibitory effect. All saquinavir metabolites were highly correlated with testosterone 6beta-hydroxylation and with each other. Human hepatic microsomes and recombinant CYP3A4 oxidized saquinavir to the same metabolic profile observed with human small-intestinal microsomes. Indinavir, a potent HIV protease inhibitor and a substrate for human hepatic CYP3A4, was a comparatively poor substrate for human intestinal microsomes and inhibited the oxidative metabolism of saquinavir to all metabolites with a Ki of 0.2 microM. In addition, saquinavir inhibited the human, small-intestinal, microsomal CYP3A4-dependent detoxication pathway of terfenadine to its alcohol metabolite with a Ki value of 0.7 microM. These data indicate that saquinavir is metabolized by human intestinal CYP3A4, that this metabolism may contribute to its poor oral bioavailability, and that combination therapy with indinavir or other protease inhibitors may attenuate its low relative bioavailability. |