3-D QSAR Investigations of the Inhibition of Leishmania major Farnesyl Pyrophosphate Synthase by Bisphosphonates

Autor: Sanders, J. M., Gomez, A. O., Mao, J., Meints, G. A., Brussel, E. M. Van, Burzynska, A., Kafarski, P., Gonzalez-Pacanowska, D., Oldfield, E.
Zdroj: Journal of Medicinal Chemistry; November 2003, Vol. 46 Issue: 24 p5171-5183, 13p
Abstrakt: We report the activities of 62 bisphosphonates as inhibitors of the Leishmania major mevalonate/isoprene biosynthesis pathway enzyme, farnesyl pyrophosphate synthase. The compounds investigated exhibit activities (IC50 values) ranging from ~100 nM to ~80 μM (corresponding to Ki values as low as 10 nM). The most active compounds were found to be zoledronate (whose single-crystal X-ray structure is reported), pyridinyl-ethane-1-hydroxy-1,1-bisphosphonates or picolyl aminomethylene bisphosphonates. However, N-alicyclic aminomethylene bisphosphonates, such as incadronate (N-cycloheptyl aminomethylene bisphosphonate), as well as aliphatic aminomethylene bisphosphonates containing short (n = 4, 5) alkyl chains, were also active, with IC50 values in the 200−1700 nM range (corresponding to Ki values of ~20−170 nM). Bisphosphonates containing longer or multiple (N,N-) alkyl substitutions were inactive, as were aromatic species lacking an o- or m-nitrogen atom in the ring, or possessing multiple halogen substitutions or a p-amino group. To put these observations on a more quantitative structural basis, we used three-dimensional quantitative structure−activity relationship techniques:  comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA), to investigate which structural features correlated with high activity. Training set results (N = 62 compounds) yielded good correlations with each technique (R2 = 0.87 and 0.88, respectively), and were further validated by using a training/test set approach. Test set results (N = 24 compounds) indicated that IC50 values could be predicted within factors of 2.9 and 2.7 for the CoMFA and CoMSIA methods, respectively. The CoMSIA fields indicated that a positive charge in the bisphosphonate side chain and a hydrophobic feature contributed significantly to activity. Overall, these results are of general interest since they represent the first detailed quantitative structure−activity relationship study of the inhibition of an expressed farnesyl pyrophosphate synthase enzyme by bisphosphonate inhibitors and that the activity of these inhibitors can be predicted within about a factor of 3 by using 3D-QSAR techniques.
Databáze: Supplemental Index