Abstrakt: |
Empiric evaluations of fundamental characteristics of interactions of gaseous hydrogen with different kinds of graphite and novel carbonaceous nanomaterials and revealing the micromechanisms have been carried out. The approaches used were those of the thermodynamics of reversible and irreversible processes for analysis of the adsorption, absorption, diffusion, TPD and other experimental data and comparing the analytical results with first-principle calculations. Such analysis of a number of the known experimental and theoretical data has shown a real possibility of the multilayer specific adsorption (intercalation) of hydrogen between graphene layers in novel carbonaceous nanomaterials, relevance for solving the bottle-neck problem of the hydrogen on-board storage in fuel-cell-powered vehicles, and other technical applications. |