Optimizing the Topology and Energy-Aware VM Migration in Cloud Computing

Autor: More, Nitin, Ingle, Rajesh
Zdroj: International Journal of Ambient Computing and Intelligence; July 2020, Vol. 11 Issue: 3 p42-65, 24p
Abstrakt: The advancements in virtual machine migration (VMM) have been trending due to its effective load balancing features in cloud infrastructure. Previously, data centers were used for handling VMs organized in racks. These racks are arranged in a spanning tree topology with a high bandwidth. Thus, the cost for moving the data between servers is highest when the racks are far from each other. This work addresses this issue and proposed VMM strategy based on self-adaptive D-Crow algorithm (S-DCrow) that incorporates adaptive constants in Dragonfly-based Crow (D-Crow) optimization algorithm based on the proposed topology model. The proposed S-DCrow describes a migrating model, which is based on topology, energy consumption, load, and migration cost. Here, the network is organized in a spanning tree topology and is adapted by proposed S-DCrow for optimal VMM. The performance of the proposed S-DCrow shows superior performance in terms of load, energy consumption, and migration cost with the values of 0.1417, 0.1009, and 0.1220, respectively.
Databáze: Supplemental Index