Multiphase Flow Models in Packed Beds

Autor: Carbonell, R. G., Carbonell, R. G.
Zdroj: Oil & Gas Science and Technology - Revue de l'IFP; July 2000, Vol. 55 Issue: 4 p417-425, 9p
Abstrakt: This paper presents a review of theories for gas and liquid flows in packed beds as applied to chemical reactor design. Significant progress has been made in understanding multiphase flow phenomena in packed beds and the ability to make quantitative predictions of flow behavior. Successful theories use spatially averaged continuity and momentum equations for the gas and liquid phases, coupled with constitutive equations for drag forces between the fluid phases and the particles and for capillary pressure effects in the column. The result is a self-consistent set of equations that are able to model experimental data for liquid holdup and pressure drop under steady-state conditions. These theories have also been used to generate information on the stability of these steady-state flows. Remarkable agreement has been found between the theoretical predictions of the transitions from the low-interaction to the high-interaction regimes and experimental observations. In addition, the same set of equations has been successful in modeling both cocurrent and countercurrent flows of gas and liquid phases in packed beds. This is a robust approach based on fundamental principles of fluid mechanics that can be applied to other reactor configurations. A similar formulation has also led to improvements in understanding of gas lift reactor hydrodynamics, and some of these results will be presented for comparison. A summary of challenges that exist in extending these hydrodynamic models to include the effects of heat transfer, mass transfer and reaction rates will also be presented.
Databáze: Supplemental Index