Autor: |
Endenburg, SC, Hantgan, RR, Lindeboom-Blokzijl, L, Lankhof, H, Jerome, WG, Lewis, JC, Sixma, JJ, de Groot, PG |
Zdroj: |
Blood; December 1995, Vol. 86 Issue: 11 p4158-4165, 8p |
Abstrakt: |
Platelet adhesion to fibrin at high shear rates depends on both the glycoprotein (GP) IIb:IIIa complex and a secondary interaction between GPIb and von Willebrand factor (vWF). This alternative link between platelets and vWF in promoting platelet adhesion to fibrin has been examined in flowing whole blood with a rectangular perfusion chamber. Optimal adhesion required both platelets and vWF, as shown by the following observations. No binding of vWF could be detected when plasma was perfused over a fibrin surface or when coated fibrinogen was incubated with control plasma in an enzyme-linked immunosorbent assay. However, when platelets were present during perfusion, interactions between vWF and fibrin could be visualized with immunoelectron microscopy. Exposure of fibrin surfaces to normal plasma before perfusion with severe von Willebrand's disease blood did not compensate for the presence of plasma vWF necessary for adhesion. vWF mutants in which the GPIIb:IIIa binding site was mutated or the GPIb binding site was deleted showed that vWF only interacts with GPIb on platelets in supporting adhesion to fibrin and not with GPIIb:IIIa. Complementary results were obtained with specific monoclonal antibodies against vWF. Thus, vWF must first bind to platelets before it can interact with fibrin and promote platelet adhesion. Furthermore, only GPIb, but not GPIIb:IIIa is directly involved in this interaction of vWF with platelets. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|