Fas receptor (CD95)-mediated apoptosis is induced in leukemic cells entering G1B compartment of the cell cycle

Autor: Komada, Y, Zhou, YW, Zhang, XL, Xue, HL, Sakai, H, Tanaka, S, Sakatoku, H, Sakurai, M
Zdroj: Blood; November 1995, Vol. 86 Issue: 10 p3848-3860, 13p
Abstrakt: Apoptotic cell death induced by cross-linking Fas receptor (FasR/CD95) has been investigated in human acute myelogenous leukemia (AML) cells. FasR-mediated growth inhibition and DNA fragmentation could be induced in certain cases of AML. Interestingly, when DNA synthesis and G1 -> S transition in the cell cycle were enhanced by interleukin-3 or granulocyte-macrophage colony-stimulating factor, Fas-insensitive blast cells acquired cellular susceptibility toward FasR-mediated growth inhibition. To further evaluate an association between the Fas-R- mediated action and a specific phase of the cell cycle, a FasR+ leukemic cell line, MML-1, was established from a patient with AML. The morphologic feature of dying cells and DNA fragmentation indicated that FasR cross-linking induced apoptotic cell death in MML-1 cells. Cell cycle arrest in G1A phase with the treatment of phorbol 12-myristate 13- acetate or thymidine rendered MML-1 cells resistant to FasR-mediated apoptosis without downregulation of surface FasR expression. However, S- phase arrest with 5-fluorouracil could neither enhance nor inhibit FasR- mediated apoptosis. Simultaneous DNA/RNA quantification analysis revealed the selective loss of cells in G1B compartment, accompanied by the increase of apoptotic nuclei in sub-G1 fraction. These findings suggested that FasR-mediated apoptotic signals could be transduced into cells in G1B compartment and G1A -> G1B transition might augment the induction of FasR-mediated apoptosis.
Databáze: Supplemental Index