Polymorphism in Solid Dispersions

Autor: Sanabria Ortiz, Karina, Hernández Espinell, José R., Ortiz Torres, Desire, López-Mejías, Vilmalí, Stelzer, Torsten
Zdroj: Crystal Growth & Design; February 2020, Vol. 20 Issue: 2 p713-722, 10p
Abstrakt: Solid dispersions embed active pharmaceutical ingredients in polymeric carriers to improve their solubility. Three solid dispersion preparation techniques are typically employed: solvent evaporation, solvent-fusion, and fusion methods. Although these are also widely recommended as preparative methods for phase diagram determination, few examples exist concerning their effect on the resulting polymorph, once the solid dispersion is produced. In this study, the influence of these methods on the polymorphic form obtained in crystalline solid dispersions (CSDs) composed of flufenamic acid (FFA) and polyethylene glycol was investigated. The physical mixtures and CSDs were characterized by powder X-ray diffraction, infrared spectroscopy, and differential scanning calorimetry. The results reveal that the fusion method leads to concomitant polymorphs (mainly FFA I and III) in the CSDs. In contrast, the solvent evaporation and solvent-fusion methods lead to FFA III. Collectively, these results demonstrate that preparative methods have a significant influence on the phase diagrams determined (average relative deviation ≤8%), which are often used to justify the design space of manufacturing processes, including those deemed “continuous.” Consequently, choosing a preparation method that results in the desired polymorph is crucial to ensure accurate determination of phase diagrams and critical quality attributes of formulations.
Databáze: Supplemental Index