Autor: |
Ghaem Maghami, Mohammad, Scheitl, Carolin P. M., Höbartner, Claudia |
Zdroj: |
Journal of the American Chemical Society; December 2019, Vol. 141 Issue: 50 p19546-19549, 4p |
Abstrakt: |
General and efficient tools for site-specific fluorescent or bioorthogonal labeling of RNA are in high demand. Here, we report direct in vitroselection, characterization, and application of versatile trans-acting 2′–5′ adenylyl transferase ribozymes for covalent and site-specific RNA labeling. The design of our partially structured RNA pool allowed for in vitroevolution of ribozymes that modify a predetermined nucleotide in cis(i.e., intramolecular reaction) and can then be easily engineered for applications in trans(i.e., in an intermolecular setup). The resulting ribozymes are readily designed for specific target sites in small and large RNAs and accept a wide variety of N6-modified ATP analogues as small-molecule substrates. The most efficient new ribozyme (FH14) shows excellent specificity toward its target sequence also in the context of total cellular RNA. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|