Autor: |
Merah, Hocine, Mesri, Mokhtaria, Merrad, Yacine, Talbi, Larbi |
Zdroj: |
International Journal of Sensors Wireless Communications and Control; 2019, Vol. 9 Issue: 3 p372-387, 16p |
Abstrakt: |
Background & Objective: One of the disadvantages of Multi-carrier Code Division Multiple Access (MC-CDMA) system is the high value of Peak to Average Power Ratio (PAPR). This paper proposes an approach called Iterative Invertible Clipping Method (IICM) to address the PAPR for MC-CDMA signal based on wireless communication system characteristics. This is mainly concentrated in clipping function making use of a polynomial of degree three at the transmitter, and its inverse at the receiver, to recover the original signal. Method: A Fast Fourier Transform (FFT)-based frequency domain filter is employed to reduce the overall peak regrowth which is supported by measuring the Adjacent Channel Power Ratio (ACPR) after soft clipping and filtering. This technique is compared with Ragusa method using a polynomial of degree 5. Result: The simulated results of the proposed method showed better performance in terms of PAPR reduction, Bit Error Rate (BER), and computational complexity requiring two iterations only. The Complementary Cumulative Complementary Density Function (CCDF) is served to measure and improve PAPR performance of the system. Conclusion: The channel coding process is applied to strengthen the obtained results in the Additive White Gaussian Noise (AWGN) channel and fading channel (Rayleigh). The High-Power Amplifier (HPA) is used for validation purposes. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|