Autor: |
TALWAR, Rashmi, LEELAVATHY, Vijayapandian, KRISHNA RAO, Jala V., APPAJI RAO, Naropantul, SAVITHRI, Handanahal S. |
Zdroj: |
Biochemical Journal; September 2000, Vol. 350 Issue: 3 p849-853, 5p |
Abstrakt: |
Serine hydroxymethyltransferase belongs to the α class of pyridoxal-5´-phosphate enzymes along with aspartate aminotransferase. Recent reports on the three-dimensional structure of human liver cytosolic serine hydroxymethyltransferase had suggested a high degree of similarity between the active-site geometries of the two enzymes. A comparison of the sequences of serine hydroxymethyltransferases revealed the presence of several highly conserved residues, including Pro-297. This residue is equivalent to residue Arg-292 of aspartate aminotransferase, which binds the γ-carboxy group of aspartate. In an attempt to change the reaction specificity of the hydroxymethyltransferase to that of an aminotransferase and to assign a possible reason for the conserved nature of Pro-297, it was mutated to Arg. The mutation decreased the hydroxymethyltransferase activity significantly (by 85–90%) and abolished the ability to catalyse alternative reactions, without alteration in the oligomeric structure, pyridoxal 5´-phosphate content or substrate binding. However, the concentration of the quinonoid intermediate and the extent of proton exchange was decreased considerably (by approx. 85%) corresponding to the decrease in catalytic activity. Interestingly, mutant Pro-297 Arg was unable to perform the transamination reaction with l-aspartate. All these results suggest that although Pro-297 is indirectly involved in catalysis, it might not have any role in imparting substrate specificity, unlike the similarly positioned Arg-292 in aspartate aminotransferase. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|