Autor: |
Baldassare, J J, Tarver, A P, Henderson, P A, Mackin, W M, Sahagan, B, Fisher, G J |
Zdroj: |
Biochemical Journal; April 1993, Vol. 291 Issue: 1 p235-240, 6p |
Abstrakt: |
Activation of human platelets by the arachidonic acid metabolite thromboxane A2 and the thromboxane A2 mimic U46619 is mediated through phosphoinositide-specific phospholipase C-catalysed hydrolysis of phosphoinositides. We have established conditions to reconstitute U46619-stimulated phosphoinositide breakdown by addition of guanine nucleotides and soluble platelet phospholipase C activities to isolated 32P-labelled membranes. Receptor-activated phosphoinositide hydrolysis was observed in the presence of guanosine 5′-[gamma-thio]triphosphate (GTP[S]) or GTP plus U46619. Phosphoinositide hydrolysis was dependent on both GTP and U46619, with half-maximal stimulation observed at 5 microM and 500 nM respectively. Phospholipase C isoenzymes beta, gamma 1, gamma 2 and delta were purified from platelet cytosol and their ability to reconstitute GTP[S]-dependent and GTP/U46619-dependent phosphoinositide hydrolysis determined. Phospholipase C-beta and -delta, but not phospholipase C-gamma 1 or -gamma 2, catalysed phosphoinositide breakdown in the presence of GTP[S]. In contrast, only phospholipase C-beta was able to reconstitute GTP-dependent U46619-induced hydrolysis. The participation of GTP-regulatory proteins in the reconstitution of GTP[S]- and GTP/U46619-induced phosphoinositide hydrolysis was examined using antibodies to the C-terminals of the alpha-subunits of three of the heterotrimeric GTP-binding proteins expressed in human platelets Gq, Gi2 and Gi3. Anti-Gq antibody, but not anti-Gi2 or Gi3 antibody, inhibited both GTP[S]- and GTP/U46619-dependent reconstitution of phosphoinositide hydrolysis with phospholipase C-beta. In contrast GTP[S]-stimulated hydrolysis by phospholipase C-delta was not inhibited by any of the G-protein antibodies. These results show the functional specificity of GTP-binding proteins and phospholipase C isoenzymes in mediating agonist-induced phosphoinositide hydrolysis in human platelets. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|