Abstrakt: |
Two glycoforms of a secretable human thrombomodulin mutant [TMD1-105 and TMD1-75; Parkinson, Grinnell, Moore, Hoskins, Vlahos & Bang (1990) J. Biol. Chem. 265, 12602-12610] were expressed in human 293 cells and used to study the role of glycosylation in the functions of this endothelial-cell thrombin receptor. Carbohydrate content analysis and intrinsic labelling with [3H]glucosamine and [35S]sulphate showed that TMD1-105 contained a chondroitin sulphate whereas TMD1-75 did not. Other than chondroitin sulphate, the carbohydrate contents of the two glycoforms were identical, indicating similar glycosylation patterns at other O-linked and N-linked sites in the two glycoforms. The properties of TMD1-105 were converted into those of TMD1-75 by chondroitin ABC lyase digestion. Trypsin digestion of labelled TMD1-105 permitted isolation of two overlapping peptides that contained chondroitin sulphate, spanned the entire O-glycosylation domain and had O-glycosylation sites at Ser-492, Ser-498, Thr-500, Thr-504 and Thr-506. The chondroitin sulphate-attachment site was assigned to Ser-492 as this residue is conserved in mouse and bovine thrombomodulin and lies within a sequence Ser-Gly-Ser-492-Gly-Glu-Pro, which has strong similarity to chondroitin sulphate attachment sites in other proteoglycans. Five peptides with N-linked carbohydrate were also isolated and contained glycosylation sites in the lectin-like domain (Asn-47, Asn-115, Asn-116) and in the fourth (Asn-382) and fifth (Asn-409) epidermal growth factor domains. The role of N-linked and simple O-linked carbohydrates in the functions of human thrombomodulin remain unclear. The present studies demonstrate, however, that the presence of chondroitin sulphate in human thrombomodulin has profound effects on all of the anticoagulant properties of this important anticoagulant thrombin receptor. |