Some properties of the lectin from Datura stramonium (thorn-apple) and the nature of its glycoprotein linkages

Autor: Desai, Nila N., Allen, Anthony K., Neuberger, Albert
Zdroj: Biochemical Journal; August 1981, Vol. 197 Issue: 2 p345-353, 9p
Abstrakt: The lectin from Datura stramonium (thorn-apple; Solanaceae) has been purified by affinity chromatography and shown to be a glycoprotein containing about 40% (w/w) of carbohydrate. The most abundant amino acids are hydroxyproline, cystine, glycine and serine. Results obtained by gel filtration in 6m-guanidinium chloride on Sepharose 4B suggest that it has a subunit mol.wt. of about 30000 and that it probably associates into dimers. The lectin is inhibited specifically by chitin oligosaccharides and bacterial-cell-wall oligosaccharides, but only weakly by N-acetylglucosamine. Glycopeptides from soya-bean (Glycine max) lectin and fetuin are also strong inhibitors of Datura lectin, indicating that it interacts with internal N-acetylglucosamine residues. Its specificity is similar to, but not identical with, that of potato (Solanum tuberosum) lectin. After prolonged proteolytic digestion of reduced and S-carboxymethylated or S-aminoethylated derivatives of the lectin, glycopeptides of mol.wt. of about 18000 were isolated. The glycopeptides contained all the carbohydrate and hydroxyproline of the original glycoprotein, and lesser amounts of serine, S-carboxymethylcysteine and other amino acids. The arabinose residues of the glycoprotein are present as β-l-arabinofuranosides linked to the polypeptide chain through the hydroxyproline residues, and can be removed by mild acid treatment; the ratio of arabinose to hydroxyproline is 3.4:1. Some of the serine residues of the polypeptide chain are substituted with one or two α-galactopyranoside residues, most of which can be removed by the action of α-galactosidase. The galactose residues are more easily removed from the acid-treated glycopeptide (from which arabinose has been removed) than from the complete glycopeptide, indicating a steric hindrance of the galactosidase action by the adjacent chains of arabinosides. There is a slow release of galactose residues by a process of β-elimination in 0.5m-NaOH (pH13.7) from the complete glycopeptide, and a fairly rapid release of galactose by this process from the acid-treated glycopeptide, which lacks arabinose. This is probably due to the inhibitory effect of the negative charge on the adjacent arabinofuranoside residues. The similarities and differences between the lectins from Datura and potato are discussed, as are their structural resemblance to glycopeptides that have been isolated from plant cell walls.
Databáze: Supplemental Index