Abstrakt: |
1. [26-(14)C]- and [4-(14)C]-Cholesterol were incubated with liver mitochondria from normal and thyroxine-treated rats, and the radioactivity was measured in the carbon dioxide evolved during the incubation, in a butanol extract of the incubation mixture and in a volatile fraction containing substances of low molecular weight derived from the side chain of cholesterol. The butanol extract was separated by paper chromatography into three radioactive fractions, one of which contained the steroids more polar than cholesterol. 2. The butanol extract from incubations with [4-(14)C]cholesterol contained a radioactive substance moving with the same R(F) as cholic acid on thin-layer chromatography. 3. After incubation with [26-(14)C]-cholesterol, 60-80% of the radioactivity extracted by steam-distillation of the incubation mixture at acid pH was recovered as [(14)C]propionic acid. 4. In the presence of [26-(14)C]cholesterol, mitochondria from thyroxine-treated rats produced more radioactivity in carbon dioxide and in the volatile fraction, and less radioactivity in the fraction containing the polar steroids, than did mitochondria from normal rats. In the presence of [4-(14)C]cholesterol, mitochondria from thyroxine-treated rats produced the same amount of radioactivity in the polar steroids as did normal mitochondria. 5. Thyroxine treatment had no effect on the capacity of the mitochondria to oxidize propionate to carbon dioxide. 6. These results are best explained by supposing that thyroxine stimulates a rate-limiting reaction leading to the cleavage of the side chain of cholesterol, but has little or no influence on the hydroxylations of the ring system or on the oxidation of the C(3) fragment removed from the side chain. |