Phosphorylation of myosin-II regulatory light chain by cyclin-p34cdc2: a mechanism for the timing of cytokinesis.

Autor: Satterwhite, L L, Lohka, M J, Wilson, K L, Scherson, T Y, Cisek, L J, Corden, J L, Pollard, T D
Zdroj: The Journal of Cell Biology; August 1992, Vol. 118 Issue: 3 p595-605, 11p
Abstrakt: To understand how cytokinesis is regulated during mitosis, we tested cyclin-p34cdc2 for myosin-II kinase activity, and investigated the mitotic-specific phosphorylation of myosin-II in lysates of Xenopus eggs. Purified cyclin-p34cdc2 phosphorylated the regulatory light chain of cytoplasmic and smooth muscle myosin-II in vitro on serine-1 or serine-2 and threonine-9, sites known to inhibit the actin-activated myosin ATPase activity of smooth muscle and nonmuscle myosin (Nishikawa, M., J. R. Sellers, R. S. Adelstein, and H. Hidaka. 1984. J. Biol. Chem. 259:8808-8814; Bengur, A. R., A. E. Robinson, E. Appella, and J. R. Sellers. 1987. J. Biol. Chem. 262:7613-7617; Ikebe, M., and S. Reardon. 1990. Biochemistry. 29:2713-2720). Serine-1 or -2 of the regulatory light chain of Xenopus cytoplasmic myosin-II was also phosphorylated in Xenopus egg lysates stabilized in metaphase, but not in interphase. Inhibition of myosin-II by cyclin-p34cdc2 during prophase and metaphase could delay cytokinesis until chromosome segregation is initiated and thus determine the timing of cytokinesis relative to earlier events in mitosis.
Databáze: Supplemental Index