Manipulating giant cross-Kerr nonlinearity at multiple frequencies in an atomic gaseous medium

Autor: van Doai, Le, Le Thuy An, Nguyen, Xuan Khoa, Dinh, Sau, Vu Ng?c, Huy Bang, Nguyen
Zdroj: Journal of the Optical Society of America B: Optical Physics; October 2019, Vol. 36 Issue: 10 p2856-2862, 7p
Abstrakt: We proposed a model for manipulating giant cross-Kerr nonlinearity in an atomic gaseous medium consisting of six-level inverted-Y systems. The absorption, dispersion, and cross-Kerr nonlinear coefficients of the medium are derived as analytical functions of the parameters of probe, coupling, and signal fields. It is shown that the cross-Kerr nonlinearity is enhanced significantly in three transparent windows under electromagnetically induced transparency (EIT). Furthermore, the cross-Kerr nonlinearity can be manipulated between positive and negative values by controlling intensity and/or frequency of the coupling laser. Such controllable giant cross-Kerr nonlinearity with the analytical interpretation is convenient to find experimental parameters and is useful for studying applications of controllable multi-channel quantum phase gates.
Databáze: Supplemental Index