Various Applications of Multifunctional Thin Films with Specific Properties Deposited by the ALD Method

Autor: Boryło, Paulina, Szindler, Marek, Lukaszkowicz, Krzysztof
Zdroj: Diffusion and Defect Data Part B: Solid State Phenomena; July 2019, Vol. 293 Issue: 1 p111-123, 13p
Abstrakt: This paper presents application examples of atomic layer deposition method (ALD) adopted for production of multifunctional thin films for various usage such as passive, antireflection and transparent conductive films. First part of this paper introduces the mechanism of ALD process, in the rest of it, aluminum oxide (as passive and antireflection) and zinc oxide (as antireflection and transparent conductive) ALD thin films are presented. In the literature one can find reports on the use of the Al2O3 layer as passivating and ZnO layers as a transparent conductive oxide in diodes, polymeric and dye sensitized solar cells. In this article, the ALD layers were tested for their use in silicon solar cells, using their good electrical and optical properties. For examination of prepared thin films characteristics, following research methods were used: scanning electron microscope, atomic force microscope, X-ray diffractometer, ellipsometer, UV/VIS spectrometer and resistance measurements. By depositing a layer thickness of about 80 nm, the short-circuit current on the surface of the solar cell was increased three times while reducing the reflection of light. In turn, by changing the deposition temperature of the ZnO thin film, you can control its electrical properties while maintaining high transparency. The obtained results showed that the ALD method provide the ability to produce a high quality multifunctional thin films with the required properties.
Databáze: Supplemental Index