Autor: |
Lueangjaroenkit, Piyangkun, Teerapatsakul, Churapa, Sakka, Kazuo, Sakka, Makiko, Kimura, Tetsuya, Kunitake, Emi, Chitradon, Lerluck |
Zdroj: |
Mycobiology; April 2019, Vol. 47 Issue: 2 p217-229, 13p |
Abstrakt: |
AbstractTwo manganese peroxidases (MnPs), MnP1 and MnP2, and a laccase, Lac1, were purified from Trametes polyzonaKU-RNW027. Both MnPs showed high stability in organic solvents which triggered their activities. Metal ions activated both MnPs at certain concentrations. The two MnPs and Lac1, played important roles in dye degradation and pharmaceutical products deactivation in a redox mediator-free system. They completely degraded Remazol brilliant blue (25 mg/L) in 10–30 min and showed high degradation activities to Remazol navy blue and Remazol brilliant yellow, while Lac1 could remove 75% of Remazol red. These three purified enzymes effectively deactivated tetracycline, doxycycline, amoxicillin, and ciprofloxacin. Optimal reaction conditions were 50 °C and pH 4.5. The two MnPs were activated by organic solvents and metal ions, indicating the efficacy of using T. polyzonaKU-RNW027 for bioremediation of aromatic compounds in environments polluted with organic solvents and metal ions with no need for redox mediator supplements. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|