The impact of rising temperatures on water balance and phenology of European beech (Fagus sylvaticaL.) stands

Autor: Dolschak, Klaus, Gartner, Karl, Berger, Torsten W.
Zdroj: Modeling Earth Systems and Environment; December 2019, Vol. 5 Issue: 4 p1347-1363, 17p
Abstrakt: In this article, we outline the set-up and the application of an eco-hydrological box model, with the aim to describe the water balance of deciduous (Fagus SylvaticaL.) forest stands. The water balance model (WBM) uses standard meteorological parameters as input variables and runs on a daily time step. It consists of two modules. The aboveground module (1) comprises routines for fog precipitation generation, precipitation interception and snowfall/snowmelt dynamics. Covered belowground processes (2) are bypass flow, percolation, soil evaporation and transpiration, where the latter two processes are considered separately. Preceding to the WBM, a routine is introduced, specifying the intra-annual foliage dynamics of beech. Emphasis is also laid on the inter-annual variation of beech phenology. Leaf sprouting and leaf senescence are calculated as functions of day-length and air temperature. The WBM was applied to four European beech dominated forest stands in the northeastern part of Austria. They are located on a gradient of declining annual precipitation (from west to east). The two easterly sites are located close to the (dry) limit of the natural distribution of beech. Records of soil moisture were used for the adjustment of 26 parameters. On all sites the calibration process (simulated annealing) delivered good predictions of soil moisture (Nash–Sutcliffe efficiency ≥ 0.925). Then, the obtained parameterization was used to apply different scenarios of global warming. The temperature was increased step-wisely up to 4 °C. All scenarios were run (1) with present phenological conditions and (2) with phenology responding to higher temperatures. This way, we wanted to assign the effect of higher temperatures and longer growing seasons on the water dynamics of the forest stands. A warming of 1 °C corresponded roughly to an elongation of the growing season of 4.5 days, where the start of the growing season was affected more strongly than the end. Apparently, higher temperatures led to drier soils. The strongest change was observed in early summer, also amplified by an earlier start of the growing season. Rising temperatures led to lower export fluxes of liquid water, simultaneously increasing evapotranspiration (ET). The gain in ET was almost entirely assignable to increased soil evaporation. Drier soils led to a sharp depression of transpiration during summer months. This decline was compensated by the effect of elongated growing seasons. The risk of severe drought was increased by higher temperatures, but here the contribution of growing season length was negligible. Drier soils seem to hamper the stands’ productivity. For all warming scenarios, the estimated increase of the gross primary production, caused by longer periods of assimilation, is nullified by the effect of soil water deficit in mid-summer.
Databáze: Supplemental Index