Autor: |
Leng, Jin Feng, Wang, Kang, Xia, Chang Peng |
Zdroj: |
Materials Science Forum; January 2019, Vol. 944 Issue: 1 p671-677, 7p |
Abstrakt: |
In this work, the preparation of graphene by chemical oxidation reduction method and a series of chemical reactions to get graphene oxide, with the preparation of graphene composites by simply chemical reduction method for the preparation of palladium/graphene composites. Through the chemical reduction method, the small size of Pd nanoparticles is acquired by controlling the content of reducing agent. The Pd nanoparticles on graphene surface is 10nm size and evenly distributed. Pd2+ adsorption on graphene surface and in situ were partially reduced to Pd to Pd2+ nanoparticles by the reducibility of graphene. In the process, the graphene was reduced to graphene and the final compound was thinner and more transparent than the pre-experiment oxide. The oxygen-containing functional groups on the surface of the graphene have influence to the nucleation and growth of metal nanoparticles and KI can control the morphology and size of nanoparticles. The particle size and dispersion uniformity have great influence on the catalytic performance of composites, the smaller particles have better catalytic performance. Keywords:palladium, graphene composites, nanoparticles |
Databáze: |
Supplemental Index |
Externí odkaz: |
|