Abstrakt: |
In today’s Internet, modern routers rely on high-performance reliable general-purpose multi-core packet processing systems in order to support the flexibility and the plethora of protocol operations and applications. These processing systems are programmable and have replaced the traditional-fixed logic ASICs in the data path of such routers. Hence, lots of vulnerabilities and faults are introduced as the result of such programmability making the systems susceptible to attacks and failures. Particularly, it is a difficult task to detect whether a processing core behaves correctly, or it has a failure resulting from errors or attacks. In this paper, we address this problem by proposing a novel approach to verify the correct operation of the network processor. We propose a secure, fault-tolerant, and reliable monitoring subsystem which functions in parallel with the processing core of the router and aids in the detection of attacks changing the processing behavior of the processor. We prove experimentally that our system has the ability to detect the malicious activity and securely restore the router’s operation to a different, but functionally equivalent, state. We also show experimentally that our approach has a better efficiency when compared with other existing work. |