Two-Dimensional Nonlinear Optical Switching Materials: Molecular Engineering toward High Nonlinear Optical Contrasts

Autor: Hänsel, Marc, Barta, Christoph, Rietze, Clemens, Utecht, Manuel, Rück-Braun, Karola, Saalfrank, Peter, Tegeder, Petra
Zdroj: The Journal of Physical Chemistry - Part C; October 2018, Vol. 122 Issue: 44 p25555-25564, 10p
Abstrakt: Combining photochromism and nonlinear optical (NLO) properties of molecular switches-functionalized self-assembled monolayers (SAMs) represents a promising concept toward novel photonic and optoelectronic devices. Using second harmonic generation, density functional theory, and correlated wave function methods, we studied the switching abilities as well as the NLO contrasts between different molecular states of various fulgimide-containing SAMs on Si(111). Controlled variations of the linker systems as well as of the fulgimides enabled us to demonstrate very efficient reversible photoinduced ring-opening/closure reactions between the open and closed forms of the fulgimides. Thus, effective cross sections on the order of 10–18cm–2are observed. Moreover, the reversible switching is accompanied by pronounced NLO contrasts up to 32%. Further molecular engineering of the photochromic switches and the linker systems may even increase the NLO contrast upon switching.
Databáze: Supplemental Index