Autor: |
Laterza, Omar F., Taylor, Lynn, Unnithan, Shashikala, Nguyen, Ly, Curthoys, Norman P. |
Zdroj: |
American Journal of Physiology - Renal Physiology; November 2000, Vol. 279 Issue: 5 pF866-F873, 8p |
Abstrakt: |
Phosphoenolpyruvate carboxykinase (PEPCK) is a key regulatory enzyme of renal gluconeogenesis. The 3′-nontranslated region of the PEPCK mRNA contains an instability element that facilitates its rapid turnover and contributes to the regulation of PEPCK gene expression. Such processes are mediated by specific protein-binding elements. Thus RNA gel shift analysis was used to identify proteins in rat renal cortical cytosolic extracts that bind to the 3′-nontranslated region of the PEPCK mRNA. Deletion constructs were then used to map the binding interactions to two adjacent RNA segments (PEPCK-6 and PEPCK-7). However, competition experiments established that only the binding to PEPCK-7 was specific. Functional studies were performed by cloning similar segments in a luciferase reporter construct, pLuc/Zeo. This analysis indicated that both PEPCK-6 and PEPCK-7 segments were necessary to produce a decrease in luciferase activity equivalent to that observed with the full-length 3′-nontranslated region. Thus the PEPCK-7 segment binds a specific protein that may recruit one or more proteins to form a complex that mediates the rapid decay of the PEPCK mRNA. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|