Phonospirometry for noninvasive measurement of ventilation: methodology and preliminary results

Autor: Que, Cheng-Li, Kolmaga, Christof, Durand, Louis-Gilles, Kelly, Suzanne M., Macklem, Peter T.
Zdroj: Journal of Applied Physiology; October 2002, Vol. 93 Issue: 4 p1515-1526, 12p
Abstrakt: We measured tracheal flow from tracheal sounds to estimate tidal volume, minute ventilation (V˙i), respiratory frequency, mean inspiratory flow (Vt/Ti), and duty cycle (Ti/Ttot). In 11 normal subjects, 3 patients with unstable airway obstruction, and 3 stable asthmatic patients, we measured tracheal sounds and flow twice: first to derive flow-sound relationships and second to obtain flow-volume relationships from the sound signal. The flow-volume relationship was compared with pneumotach-derived volume. When subjects were seated, facing forward and with neck rotation, flexion, and standing, flow-volume relationship was within 15% of pneumotach-derived volume. Error increased with neck extension and while supine. We then measured ventilation without mouthpiece or nose clip from tracheal sounds during quiet breathing for up to 30 min. Normal results ± SD revealed tidal volume = 0.37 ± 0.065 liter, respiratory frequency = 19.3 ± 3.5 breaths/min, V˙i= 6.9 ± 1.2 l/min, Vt/Ti = 0.31 ± 0.06 l/s, and Ti/Ttot = 0.37 ± 0.04. Unstable airway obstruction had large V˙idue to increased Vt/Ti. With the exception of Ti/Ttot, variations in ventilatory parameters were closer to log normal than normal distributions and tended to be greater in patients. We conclude that phonospirometry measures ventilation reasonably accurately without mouthpiece, nose clip, or rigid postural constraints.
Databáze: Supplemental Index