Hypoxia Acclimation in Carp—How It Affects O2Uptake, Ventilation, and O2Extraction from Water

Autor: Lomholt, J. P., Johansen, K.
Zdroj: Physiological Zoology; January 1979, Vol. 52 Issue: 1 p38-49, 12p
Abstrakt: The O2uptake (\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{\dot{V}_{O_{2}}}}$$\end{document}), gill ventilation (\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{\dot{V}_{G}}}$$\end{document}) and O2extraction from the ventilatory current were studied in carp acclimated to well-aerated water (oxygen partial pressure of inspired water \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{Pi_{O_{2}}}}$$\end{document}> 120 mm Hg) or hypoxic water (\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{Pi_{O_{2}}}}$$\end{document}≃ 30 mm Hg) for 4 wk or more. Gill ventilation was measured directly on unrestrained fish using an electromagnetic flow technique giving pulsatile stroke flows and breathing frequency. Exhaled water for analysis and calculation of O₂ extraction was obtained from a specially constructed mask allowing sampling of mixed, exhaled water. The technique results in higher values for O₂ extraction than typically reported for fish. The \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{\dot{V}_{O_{2}}}}$$\end{document}rates for the two acclimation groups showed higher values for the normoxia-acclimated fish correlating with a higher spontaneous activity level when compared at the conditions of acclimation. When both groups were compared in hypoxic water the converse prevailed. Thus the \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{\dot{V}_{O_{2}}}}$$\end{document}at water \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{P_{O_{2}}}}$$\end{document}10–30 mm Hg was 30%–40% higher in fish previously acclimated to hypoxic water. Normoxia-acclimated fish in high \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{P_{O_{2}}}}$$\end{document}water have a periodic breathing which changes to a continuous rhythm in hypoxic water. In high \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{P_{O_{2}}\ \dot{V}_{G}}}$$\end{document}averaged 195 ml·kg−1·min−1rising to 1,122 ml·kg−1·min−1in hypoxic water. Hypoxia-acclimated fish had similar \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{\dot{V}_{G}}}$$\end{document}values in high \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{P_{O_{2}}}}$$\end{document}water but smaller ones in hypoxic water (799 ml·kg−1·min−1). Percentage O2extraction was very high in both groups (~80), but notably hypoxia-acclimated fish extracted 85% in hypoxic water as opposed to 72% of normoxia-acclimated carp. The relative importance of ventilation and gill diffusion capacity in maintaining O2transport in hypoxia and the importance of hypoxia-acclimation are discussed.
Databáze: Supplemental Index