Autor: |
Klocke, Fritz, Shirobokov, Anton, Hild, Rafael, Feuerhack, Andreas, Trauth, Daniel, Mattfeld, Patrick |
Zdroj: |
Key Engineering Materials; April 2018, Vol. 767 Issue: 1 p93-100, 8p |
Abstrakt: |
Deep rolling is an established mechanical surface treatment technology based on local plastic deformation of the surface layer. By these means, residual stresses, and strain hardening are induced into the surface layer as well as its surface structure is smoothed. Vibrorolling is a derivate technology of deep rolling characterized by sinusoidal rolling lanes. Due to process kinematics of vibrorolling the surface layer is incrementally deformed multiple times in different directions. As a result, a more intensive plastic deformation of the surface layer is achieved and potentially tribologically active surface structures are produced. To investigate and compare the effects of both surface treatment technologies on the tribological behavior of a processed component, a friction and wear analysis under lubricated conditions was conducted in this work. Friction and wear behavior of untreated, deep rolled, and vibrorolled specimens using a pin-on-cylinder tribometer was conducted. Hardness, roughness, and geometrical measurements of the wear traces were used to characterize the specimens. Additionally, qualitative assessments of the wear traces using scanning electron microscopy imaging were made. The measurements were performed before, during, and after the friction and wear analysis. Furthermore, contact forces between a tribometer pin and the workpiece were determined to analyze the development of contact shear stresses. Based on the conducted investigations, the effects of deep rolling and vibrorolling on the friction and wear behavior of the treated specimens are discussed and explanations for the observed phenomena are formulated in this work. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|