Abstrakt: |
Nickel is one of the alloying elements promoting the formation of acicular ferrite at the expense of proeutectoid ferrite. The Ni addition reduces the steady-state nucleation rates of grain boundary ferrite allotriomorph in Fe-C-Ni alloys. Due to such reasons, Ni was added to modify the microstructure of the sintered steel, investigated in this study, with the aim of improved mechanical properties. The sintered steel, produced from pre-alloyed Fe-Cr-Mo powder mixed with 0.3 wt.% C, was modified by Ni addition and cooling rate. The alloy compositional change was performed additions of varied Ni contents of 1.0, 1.5, 2.0, 2.5 and 3.0 wt.%. The material processing variables were investigated by using two different cooling rates of 0.1 and 5.4 °Cs-1. Under the cooling rate of 0.1 °Cs-1, the sintered Fe-Cr-Mo-3C steel without Ni addition showed dual-phase microstructure consisting of ferrite (soft phase) and bainite (hard structure). With Ni additions, the dual-phase microstructure was replaced by bainitic structure. Microstructural heterogeneity was observed due to the presence of Ni-rich areas, which increased with increasing added Ni contents. Under the cooling rate of 5.4 °Cs-1, the sintered Fe-Cr-Mo-3C steels with and without Ni additions showed bainitic structure. Microstructural heterogeneity was similar to that of slowly cooled steel. Ni additions not only modified the sintered steel microstructure but increased tensile strength and elongation. In general, Ni pushes the C-curve of pearlite transformation to the right hand side and lowers the martensite start temperature. The absence of ferrite from the sintered steel with only 1 wt.% Ni addition and slowly cooled at 0.1 °Cs-1 suggests that Ni strongly suppresses the austenite → ferrite transformation. In another word, Ni promotes bainite formation in the sintered Fe-Cr-Mo-Ni-C steels. |