Abstrakt: |
Late Ordovician (c.445 Ma) glacial sandstones form important gas reservoirs in the Illizi Basin, SW Algeria. These reservoirs have a high degree of depositional and diagenetic complexity, such that understanding and predicting reservoir quality (RQ) presents a major challenge to their economic development. Porosity is typically 1–10%, but reaches up to 15% and permeability is typically <10−15m2(<1 mD), but locally reaches >10−13m2(>100 mD). The key questions addressed herein concern the development and distribution of this RQ variability, specifically why has good RQ been locally preserved?Primary depositional fabric exerts a strong control on RQ. Muddy sandstones are either highly compacted or pervasively cemented by quartz and microporous illite, and have very poor RQ. Only fine- to medium-grained, moderately well sorted, clean sandstones can contain good RQ, but texturally and mineralogically similar sandstones span a wide range of porosity and permeability. This range is primarily driven by the degree of quartz cementation, with incomplete cementation resulting in the best RQ. Quartz overgrowths in incompletely cemented clean sandstones are patchy and non-luminescent in scanning electron microscopy with cathodoluminescence (SEM-CL), possibly indicating slow growth rates. There is tentative evidence to link incomplete quartz cementation with oil charging of the reservoir. An alternative or additional explanation of RQ preservation may be related to limited silica supply in the centres of the thickest, stacked, clean sandstones, where the better RQ tends to reside.The results of this study imply that sustained high-energy depositional processes, coupled with an early oil charge, are prerequisites for retaining the best RQ. This has important implications for the exploration and development of Late Ordovician glacial sandstones in the Illizi Basin, and potentially similar plays elsewhere. |