New Flavone-Cyanoacetamide Hybrids with a Combination of Cholinergic, Antioxidant, Modulation of β-Amyloid Aggregation, and Neuroprotection Properties as Innovative Multifunctional Therapeutic Candidates for Alzheimer’s Disease and Unraveling Their Mechanism of Action with Acetylcholinesterase

Autor: Basha, Shaik Jeelan, Mohan, Penumala, Yeggoni, Daniel Pushparaju, Babu, Zinka Raveendra, Kumar, Palaka Bhagath, Rao, Ampasala Dinakara, Subramanyam, Rajagopal, Damu, Amooru Gangaiah
Zdroj: Molecular Pharmaceutics; April 2018, Vol. 15 Issue: 6 p2206-2223, 18p
Abstrakt: In line with the modern multi-target-directed ligand paradigm of Alzheimer’s disease (AD), a series of 19 compounds composed of flavone and cyanoacetamide groups have been synthesized and evaluated as multifunctional agents against AD. Biological evaluation demonstrated that compounds 7j, 7n, 7o, 7r, and 7sexhibited excellent inhibitory potency (AChE, IC50of 0.271 ± 0.012 to 1.006 ± 0.075 μM) and good selectivity toward acetylcholinesterase, significant antioxidant activity, good modulation effects on self-induced Aβ aggregation, low cytotoxicity, and neuroprotection in human neuroblastoma SK-N-SH cells. Further, an inclusive study on the interaction of 7j, 7n, 7o, 7r, and 7swith AChE at physiological pH 7.2 using fluorescence, circular dichroism, and molecular docking methods suggested that these derivatives bind strongly to the peripheral anionic site of AChE mostly through hydrophobic interactions. Overall, the multifunctional profiles and strong AChE binding affinity highlight these compounds as promising prototypes for further pursuit of innovative multifunctional drugs for AD.
Databáze: Supplemental Index