Lane detection using Randomized Hough Transform

Autor: Mongkonyong, Peerawat, Nuthong, Chaiwat, Siddhichai, Supakorn, Yamakita, Masaki
Zdroj: IOP Conference Series: Materials Science and Engineering; January 2018, Vol. 297 Issue: 1 p012050-012050, 1p
Abstrakt: According to the report of the Royal Thai Police between 2006 and 2015, lane changing without consciousness is one of the most accident causes. To solve this problem, many methods are considered. Lane Departure Warning System (LDWS) is considered to be one of the potential solutions. LDWS is a mechanism designed to warn the driver when the vehicle begins to move out of its current lane. LDWS contains many parts including lane boundary detection, driver warning and lane marker tracking. This article focuses on the lane boundary detection part. The proposed lane boundary detection detects the lines of the image from the input video and selects the lane marker of the road surface from those lines. Standard Hough Transform (SHT) and Randomized Hough Transform (RHT) are considered in this article. They are used to extract lines of an image. SHT extracts the lines from all of the edge pixels. RHT extracts only the lines randomly picked by the point pairs from edge pixels. RHT algorithm reduces the time and memory usage when compared with SHT. The increase of the threshold value in RHT will increase the voted limit of the line that has a high possibility to be the lane marker, but it also consumes the time and memory. By comparison between SHT and RHT with the different threshold values, 500 frames of input video from the front car camera will be processed. The accuracy and the computational time of RHT are similar to those of SHT in the result of the comparison.
Databáze: Supplemental Index