Characterization of Hsp90 Co-Chaperone p23 Cleavage by Caspase-7 Uncovers a Peptidase–Substrate Interaction Involving Intrinsically Disordered Regions

Autor: Martini, Cyrielle, Bédard, Mikaël, Lavigne, Pierre, Denault, Jean-Bernard
Zdroj: Biochemistry; 20240101, Issue: Preprints
Abstrakt: Caspases are cysteinyl peptidases involved in inflammation and apoptosis during which hundreds of proteins are cleaved by executioner caspase-3 and -7. Despite the fact that caspase-3 has a higher catalytic activity, caspase-7 is more proficient at cleaving poly(ADP ribose) polymerase 1 (PARP1) because it uses an exosite within its N-terminal domain (NTD). Here, we demonstrate that molecular determinants also located in the NTD enhance the recognition and proteolysis of the Hsp90 co-chaperone p23. Structure–activity relationship analyses using mutagenesis of the caspase-7 NTD and kinetics show that residues 36–45 of caspase-7, which overlap with residues necessary for efficacious PARP1 cleavage, participate in p23 recognition. We also demonstrate using chimeric and truncated proteins that the caspase-7 NTD binds close to the cleavage site in the C-terminal tail of p23. Moreover, because p23 is cleaved at a site bearing a P4 Pro residue (PEVD142↓G), which is far from the optimal sequence, we tested all residues at that position and found notable differences in the preference of caspase-7 and magnitude of differences between residues compared to the results of studies that have used small peptidic substrate libraries. Finally, bioinformatics shows that the regions we identified in caspase-7 and p23 are intrinsically disordered regions that contain molecular recognition features that permit a transient interaction between these two proteins. In summary, we characterized the binding mode for a caspase that is tailored to the specific recognition and cleavage of a substrate, highlighting the importance of studying the peptidase–substrate pair to understand the modalities of substrate recognition by caspases.
Databáze: Supplemental Index