Abstrakt: |
The microbial bioconversion of sterols can afford valuable steroid precursors, such as 4-androstene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD). The Mycobacterium neoaurumMN4 mutant strain can produce AD in high yield and can tolerate a higher concentration of the substrate phytosterol than the parent strain M. neoaurumMN2. In order to further investigate the mechanisms underlying the enhanced substrate and product tolerance, we performed a genomic analysis of the MN2 and MN4 strains. The genomes were sequenced using a high-throughput approach and analyzed using software for genome assembly, gene prediction and functional annotation, KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation, COG (cluster of orthologous) group cluster analysis, GO cluster analysis, and SNP detection and annotation. Based on comparative genomics, 184 mutations were identified in MN4, the average variant rate of 1 variant every 27,249 bases, with a TS/TV value of 0.5877 and missense mutations in one key sterol degradation genes (ChoM1) and four side chain degradation genes that encode enzymes catalysing β-oxidation. The results suggest the high AD yield might be due to mutation of ChoM and genes encoding FadE, FadB and FadA β-oxidation enzymes. This study provides a theoretical basis for further functional genomics analysis and heterologous production of M. neoaurumMN2 secondary metabolites. |