Autor: |
Smallwood, H. S., Galeva, N. A., Bartlett, R. K., Urbauer, R. J. B., Williams, T. D., Urbauer, J. L., Squier, T. C. |
Zdroj: |
Chemical Research in Toxicology; January 2003, Vol. 16 Issue: 1 p95-102, 8p |
Abstrakt: |
We examined the possible role of methionines as oxidant scavengers that prevent the peroxynitrite-induced nitration of tyrosines within calmodulin (CaM). We used mass spectrometry to investigate the reactivity of peroxynitrite with CaM at physiological pH. The possible role of methionines in scavenging peroxynitrite (ONOO-) was assessed in wild-type CaM and following substitution of all nine methionines in CaM with leucines. We find that peroxynitrite selectively nitrates Tyr99 at physiological pH, resulting in the formation of between 0.05 and 0.25 mol of nitrotyrosine/mol of CaM when the added molar ratio of peroxynitrite per CaM was varied between 2.5 and 15. In wild-type CaM there is a corresponding oxidation of between 0.8 and 2.8 mol of methionine to form methionine sulfoxide. However, following site-directed substitution of all nine methionines in wild-type CaM with leucines, the extent of nitration by peroxynitrite was unchanged. These results indicate that Tyr99 is readily nitrated by peroxynitrite and that methionine side chains do not function as an antioxidant in scavenging peroxynitrite. Thus, separate reactive species are involved in the oxidation of methionine and nitration of Tyr99 whose relative concentrations are determined by solution conditions. The sensitivity of Tyr99 in CaM to nitration suggests that CaM-dependent signaling pathways are sensitive to peroxynitrite formation and that nitration of CaM represents a cellular marker of peroxynitrite-induced changes in cellular function. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|