Light transmission spectroscopy in real time: a high-resolution nanoparticle analysis instrument

Autor: Tanner, Carol E., Sun, Nan, Deatsch, Alison, Li, Frank, Ruggiero, Steven T.
Zdroj: Applied Optics; March 2017, Vol. 56 Issue: 7 p1908-1916, 9p
Abstrakt: This paper describes light transmission spectroscopy (LTS), a technique for eliminating spectral noise and systematic effects in real-time spectroscopic measurements. In our work, we combine LTS with spectral inversion for the purpose of nanoparticle analysis. This work employs a wideband multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, the wavelength-dependent light detection system ranges from 200 to 1100 nm with ≤1  nm resolution, and the nanoparticle diameters range from 1 to 3000 nm. The nanoparticles are suspended in pure water or water-based buffer solutions. For testing and calibration purposes, results are presented for nanoparticles composed of polystyrene and gold. Mie theory is used to model the total extinction cross section, and spectral inversion is employed to obtain quantitative particle size distributions, from which information on the size, shape, and number of nanoparticles can be derived. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The LTS technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired.
Databáze: Supplemental Index