Abstrakt: |
In this paper we outline a methodology to assess the fatigue induced in piping systems submitted to thermal stratification. More specifically, the transformation from the measured outer wall temperature time histories to stress time histories in any point of the line is treated. By means of inverse transfer functions, the fluid temperature distribution is calculated from the outside wall temperatures measured in a limited number of temperature sections. Using direct transfer functions, the local stresses due to stratification may be determined as well as the pipe free curvatures and the pipe free axial strains. Using a finite beam element model of the line, the global response of the line (in terms of displacements or stresses) due to the applied curvatures, axial strains, end point displacements, internal pressure and possible contacts with the pipe environment may be determined. The method is illustrated for the surge lines of the Doel 2 and Doel 4 nuclear power plants. An excellent correlation is found between measured and calculated displacements. Typical stress time histories are shown for a plant cool down. |