Autor: |
Farah, Amjad, Harvel, Glenn, Pioro, Igor |
Zdroj: |
Journal of Nuclear Engineering and Radiation Science; July 2016, Vol. 2 Issue: 3 p031016-031016, 1p |
Abstrakt: |
In this paper, the computational fluid dynamics (CFD) code FLUENT was used to predict wall-temperature profiles inside vertical bare tubes with supercritical water (SCW) as the cooling medium, to assess the capabilities of FLUENT for SCW heat-transfer applications. Numerical results are compared to experimental data and current one-dimensional (1D) models represented by existing heat-transfer empirical correlations. Wall-temperature and heat-transfer coefficients were analyzed to select the best model to describe the fluid flow before, at, and after the pseudocritical region. k−ϵ and k−ω turbulent models were evaluated in the process, with variations in the submodel parameters such as viscous heating, thermal effects, and low-Reynolds-number correction. Results of the analysis show a fit of ±10% for wall temperatures using the SST k−ω model within the deteriorated heat-transfer regime and less than ±5% within the normal heat-transfer regime. The accuracy of the model is higher than any empirical correlation tested in the mentioned regimes and provides additional information about the multidimensional effects between the bulk-fluid and wall temperatures. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|