Dynamic Analysis Tool for Legged Robots

Autor: Ouezdou, F.B., Bruneau, O., Guinot, J.C.
Zdroj: Multibody System Dynamics; December 1998, Vol. 2 Issue: 4 p369-391, 23p
Abstrakt: The paper introduces a systematic approach for dealing with legged robot mechanism analysis. First, we briefly summarize basic mathematical tools for studying the dynamics of these multi-loop and parallel mechanisms using a unified spatial formulation which is useful for computer algorithms. The dynamic behavior analysis is based on two stages. The first one deals with establishing the equations of motion of the whole mechanism including legs tip impact effects and allowing us to solve the direct and inverse dynamic problems. The second concerns the feet–ground interaction aspect which is one of the major problem in the context of dynamic simulation for walking devices. We focus on the phenomenon of contact by introducing a general model for dynamic simulation of contacts between a walking robot and ground. This model considers a force distribution and uses an analytical form for each force depending only on the known state of the robot system. Finally, some simulation results of biped robot are given. The simulation includes all phenomena that may occur during the locomotion cycle: impact, transition from impact to contact, contact during support with static friction, transition from static to sliding friction and sliding friction.
Databáze: Supplemental Index