Infection of Juvenile Salmonids by Salmincola californiensis(Copepoda: Lernaeopodidae) in Reservoirs and Streams of the Willamette River Basin, Oregon

Autor: Monzyk, Fred R., Friesen, Thomas A., Romer, Jeremy D.
Zdroj: Transactions of the American Fisheries Society; September 2015, Vol. 144 Issue: 5 p891-902, 12p
Abstrakt: AbstractWe assessed infection prevalence and intensity by the ectoparasitic copepod Salmincola californiensisamong salmonid species rearing in reservoirs and streams upstream of reservoirs in the Willamette River basin, Oregon, during 2012 and 2013. Infection levels of juvenile Chinook Salmon Oncorhynchus tshawytscha, Rainbow Trout O. mykiss, and Cutthroat Trout O. clarkiiwere greater in reservoirs than in streams and increased with the age and size of fish. Copepods were more likely to be attached within the brachial cavity of reservoir fish (79%), whereas fins were the most common attachment site on stream fish (71%). Chinook Salmon in reservoirs were more vulnerable to infection than other species. Age-0 Chinook Salmon in reservoirs showed increasing infection prevalence throughout the year, reaching 84% by fall (compared with 11% in streams). Infection intensity was greater for age-0 Chinook Salmon in reservoirs than for those in streams. Infection prevalence for reservoir-rearing Rainbow Trout was < 1% at age 0, 22% at age 1, 36% at age 2, and 38% at age 3. Intensity was low for age-1 Rainbow Trout and increased for age-2 and age-3 fish. Infection prevalence for reservoir-rearing Cutthroat Trout collected in spring (39%) was greater than for those rearing in streams (4.5%). Juvenile kokanee O. nerkawere only present in reservoirs and were rarely infected with copepods. The lack of water current in reservoirs may increase the likelihood of infection in the brachial cavity. Greater infection levels observed for juvenile Chinook Salmon compared with the other species in reservoirs may be a function of behavioral, physiological, and habitat differences. We concluded that copepod infection in reservoirs reached levels that could decrease the fitness and survival of Chinook Salmon smolts, potentially hampering conservation and recovery efforts.Received December 23, 2014; accepted May 10, 2015
Databáze: Supplemental Index