Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage.

Autor: Warnecke, J M, Sontheimer, E J, Piccirilli, J A, Hartmann, R K
Zdroj: Nucleic Acids Research; February 2000, Vol. 28 Issue: 3 p720-727, 8p
Abstrakt: Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3'-OH and 5'-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3'-oxyanion leaving group by direct coordination to one of the catalytic metal ions, ptRNA substrates with single 3'- S -phosphorothiolate linkages at the RNase P cleavage site were synthesized. With a 3'- S -phosphorothiolate-modified ptRNA carrying a 7 nt 5'-flank, a complete shift of the cleavage site to the next unmodified phosphodiester in the 5'-direction was observed. Cleavage at the modified linkage was not restored in the presence of thiophilic metal ions, such as Mn(2+)or Cd(2+). To suppress aberrant cleavage, we also constructed a 3'- S -phosphorothiolate-modified ptRNA with a 1 nt 5'-flank. No detectable cleavage of this substrate was seen in reactions catalyzed by RNase P RNAs from Escherichia coli and Bacillus subtilis, independent of the presence of thiophilic metal ions. Ground state binding of modified ptRNAs was not impaired, suggesting that the 3'- S -phosphorothiolate modification specifically prevents formation of the transition state, possibly by excluding catalytic metal ions from the active site.
Databáze: Supplemental Index