A family of mammalian F-box proteins

Autor: Winston, Jeffrey T., Koepp, Deanna M., Zhu, Cihui, Elledge, Stephen J., Harper, J.Wade
Zdroj: Current Biology; October 1999, Vol. 9 Issue: 20 p1180-1182,S1, 4p
Abstrakt: Ubiquitin-mediated destruction of regulatory proteins is a frequent means of controlling progression through signaling pathways . F-box proteins are components of modular E3 ubiquitin protein ligases called SCFs, which function in phosphorylation-dependent ubiquitination (, reviewed in ). F-box proteins contain a carboxy-terminal domain that interacts with substrates and a 42–48 amino-acid F-box motif which binds to the protein Skp1 . Skp1 binding links the F-box protein with a core ubiquitin ligase composed of the proteins Cdc53/Cul1, Rbx1 (also called Hrt1 and Roc1) and the E2 ubiquitin-conjugating enzyme Cdc34 . The genomes of the budding yeast Saccharomyces cerevisiaeand the nematode worm Caenorhabditis eleganscontain, respectively, 16 and more than 60 F-box proteins ; in S. cerevisiae, the F-box proteins Cdc4, Grr1 and Met30 target cyclin-dependent kinase inhibitors, G1 cyclins and transcriptional regulators for ubiquitination (, reviewed in ). Only four mammalian F-box proteins (Cyclin F, Skp1, β-TRCP and NFB42) have been identified so far . Here, we report the identification of a family of 33 novel mammalian F-box proteins. The large number of these proteins in mammals suggests that the SCF system controls a correspondingly large number of regulatory pathways in vertebrates. Four of these proteins contain a novel conserved motif, the F-box-associated (FBA) domain, which may represent a new protein–protein interaction motif. The identification of these genes will help uncover pathways controlled by ubiquitin-mediated proteolysis in mammals.
Databáze: Supplemental Index