Redox Behaviour of Pyrazolyl-Substituted 1,4-Dihydroxyarenes: Formation of the Corresponding Semiquinones, Quinhydrones and Quinones

Autor: Lerner, Hans-Wolfram, Margraf, Günter, Kretz, Tonia, Schiemann, Olav, Bats, Jan W., Dürner, Gerd, Biani, Fabrizia Fabrizi de, Zanello, Piero, Boltea, Michael, Wagner, Matthias
Zdroj: Zeitschrift für Naturforschung B; March 2006, Vol. 61 Issue: 3 p252-264, 13p
Abstrakt: Pyrazolyl-substituted 1,4-dihydroxybenzene and 1,4-dihydroxynaphthene derivatives have been synthesized by reaction of 1,4-benzoquinone and 1,4-naphthoquinone, respectively, with pyrazole. Cyclovoltammetric measurements have shown that 1,4-benzoquinone possesses the potential to oxidize 2-(pyrazol-1-yl)- and 2,5-bis(pyrazol-1-yl)-1,4-dihydroxybenzene. The 2,5-bis(pyrazol-1-yl)- 1,4-dihydroxybenzene reacts with air to give quantitatively black insoluble 2,5-bis(pyrazol-1-yl)-1,4- quinhydrone. Black crystals of 2,5-bis(pyrazol-1-yl)-1,4-quinhydrone suitable for X-ray diffraction were grown from methanol at ambient temperature (monoclinic C2/c). The poor yields of pyrazolylsubstituted 1,4-dihydroxybenzene and 1,4-dihydroxynaphthene derivatives can be explained by the formation of insoluble black quinhydrons in the reaction of benzoquinone and naphthoquinone with pyrazole. The dianions of 2-(pyrazol-1-yl)- and 2,5-bis(pyrazol-1-yl)-1,4-dihydroxybenzene react with oxygen to give the corresponding semiquinone anions. 2,5-Bis(pyrazol-1-yl)-1,4-benzoquinone shows two reversible one-electron reduction processes in cyclovoltammetric measurements, whereas pyrazolyl-substituted 1,4-dihdroxybenzene and -naphthene derivatives undergo irreversibile electrontransfer processes.
Databáze: Supplemental Index