Abstrakt: |
The kinetics of desensitization induced by different agonists of acetylcholine (ACh) as well as the kinetics of recovery from densensitization, have been studied using the voltage‐clamp technique in isolated, identified Lymnaea stagnalis neurones. Desensitization follows the sum of two exponentials: one fast and one slow. The time constant of the fast desensitization component (tau Ids) under ACh application is in the range of seconds at room temperature (18‐23 degrees C). It increases upon cooling (Q10 = 2.8 +/‐ 0.9), decreases with increasing ACh concentration and is independent of membrane voltage. The time constant of the slow component of densensitization (tau Ids) is in the range of tens of seconds. It decreases with increasing drug concentration and is weakly dependent upon temperature (Q10 = 1.3 +/‐ 0.4). The relative amplitude of the fast component, estimated by back extrapolation to the position of the peak current, increases with agonist concentration and decreases upon cooling. Recovery from desensitization follows the sum of two exponentials with time constants (tau Ir and tau IIr) of the order of seconds and minutes, respectively. Cooling prolongs the slow component (Q10 of tau IIr is approx. 3) and reduces its contribution during recovery. A comparison of the desensitization induced by various agonists indicates that for the small monoquaternary agonists the onset and recovery of desensitization resemble the onset and recovery observed with ACh. For more bulky agonists, like ethoxysebacylcholine, sebacylcholine and suberylcholine, the decay of the response during prolonged application of the agonist may involve an additional blocking process. |