Number of junctional acetylcholine receptors: control by neural and muscular influences in the rat.

Autor: Andreose, J S, Fumagalli, G, Lømo, T
Zdroj: Journal of Physiology; March 1995, Vol. 483 Issue: 2 p397-406, 10p
Abstrakt: 1. The number of acetylcholine receptors (AChRs) per neuromuscular junction in soleus muscles of adult rats was estimated from counts of 125I‐alpha‐bungarotoxin binding sites. The muscles were either denervated, denervated and electrically stimulated, paralysed by botulinum toxin (BoTX), or paralysed by tetrodotoxin (TTX). 2. After denervation, the number of junctional AChRs was normal after 18 days and then fell to 54 and 35% of normal after 33 and 57 days, respectively. 3. Direct high frequency muscle stimulation (100 Hz) maintained a normal number of junctional AChRs for at least 2 months when the stimulation started on the day of denervation. When the stimulation was started progressively later, the effect of the stimulation on AChR number disappeared within about a week. The disappearance was gradual and appeared to affect all the muscle fibres equally. 4. Stimulation at 100 Hz, starting on the day of denervation and stopping after 18 days, did not prevent the endplates from losing AChRs during the subsequent 15 days without stimulation. Thus 100 Hz stimulation and innervation are not equivalent in their effects on junctional AChR number. 5. Direct low frequency muscle stimulation from the day of denervation did not maintain a normal number of junctional AChRs, as the number of AChRs fell to 70 and 62% of normal after 33 days of stimulation at 20 and 10 Hz, respectively. 6. Endplates paralysed by BoTX or TTX for 33 days lost about as many junctional AChRs (54 and 55%) as endplates denervated for 33 days (46%). Direct stimulation at 100 Hz during the last 15 days of BoTX treatment reduced but did not prevent this AChR loss (36% loss at 33 days). 7. The results show that when motor nerve terminals in rat soleus muscles are removed by axotomy, they leave a ‘trace’ which, in conjunction with appropriate muscle stimulation, can maintain a normal number of AChRs in the postsynaptic region. In non‐stimulated muscles the trace responsible for this maintenance disappears within about a week. In stimulated muscles it persists for at least 2 months. From indirect evidence it appears that the trace is a factor, or the postsynaptic effect of a factor, released by impulse activity in the nerve, and that its degradation after denervation is accelerated by the acute effects of nerve degeneration.
Databáze: Supplemental Index