Abstrakt: |
All scientific investigations begin with distinct objectives: first is the hypothesis upon which studies are undertaken to disprove, and second is the overall aim of obtaining further information, from which future and more precise hypotheses may be drawn. Studies focusing on the generation and use of gene-targeted animal models also apply these goals and may be loosely categorized into sequential phases that become apparent as the use of the model progresses. Initial studies of knockout models often focus on the plausibility of the model based on prior knowledge and whether the generation of an animal lacking the particular gene will prove lethal or not. Upon the successful generation of a knockout, confirmatory studies are undertaken to corroborate previously established hypotheses of the function of the disrupted gene product. As these studies continue, observations of unpredicted phenotypes or, more likely, the lack of a phenotype that was expected based on models put forth from past investigations are noted. Often the surprising phenotype is due to the loss of a gene product that is downstream from the functions of the disrupted gene, whereas the lack of an expected phenotype may be due to compensatory roles filled by alternate mechanisms. As the descriptive studies of the knockout continue, use of the model is often shifted to the role as a unique research reagent, to be used in studies that 1) were not previously possible in a wild-type model; 2) aimed at finding related proteins or pathways whose existence or functions were previously masked; or 3) the subsequent effects of the gene disruption on related physiological and biochemical systems. The alpha ERKO mice continue to satisfy the confirmatory role of a knockout quite well. As summarized in Table 4, the phenotypes observed in the alpha ERKO due to estrogen insensitivity have definitively illustrated several roles that were previously believed to be dependent on functional ER alpha, including 1) the proliferative and differentiative actions critical to the function of the adult female reproductive tract and mammary gland; 2) as an obligatory component in growth factor signaling in the uterus and mammary gland; 3) as the principal steroid involved in negative regulation of gonadotropin gene transcription and LH levels in the hypothalamic-pituitary axis; 4) as a positive regulator of PR expression in several tissues; 5) in the positive regulation of PRL synthesis and secretion from the pituitary; 6) as a promotional factor in oncogene-induced mammary neoplasia; and 7) as a crucial component in the differentiation and activation of several behaviors in both the female and male. The list of unpredictable phenotypes in the alpha ERKO must begin with the observation that generation of an animal lacking a functional ER alpha gene was successful and produced animals of both sexes that exhibit a life span comparable to wild-type. The successful generation of beta ERKO mice suggests that this receptor is also not essential to survival and was most likely not a compensatory factor in the survival of the alpha ERKO. In support of this is our recent successful generation of double knockout, or alpha beta ERKO mice of both sexes. The precise defects in certain components of male reproduction, including the production of abnormal sperm and the loss of intromission and ejaculatory responses that were observed in the alpha ERKO, were quite surprising. In turn, certain estrogen pathways in the alpha ERKO female appear intact or unaffected, such as the ability of the uterus to successfully exhibit a progesterone-induced decidualization response, and the possible maintenance of an LH surge system in the hypothalamus. [ABSTRACT TRUNCATED] |